Total No. of Questions: 8	3]
----------------------------------	----

P	B	3		

SEAT No.:		
[Total	NIO	of Dogge . 3

[6262]-11

T.E. (Civil Engineering)

WASTE WATER ENGINEERING

(2019 Pattern) (Semester - II) (301012)

Time: 2½ Hours]
Instructions to the cardidates

[Max. Marks : 70

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagram must be drawn wherever necessary.
- 3) Figures to the right indicates full marks.
- 4) Assume suitable data, if necessary and clearly state.
- 5) Use of cell phone is prohibited in the examination hail,
- 6) Use of electronic pocket calculator is allowed.
- **Q1**) a) Explain the term with respect to activated sludge process.

[6]

- i) Hydraulic Retention Time (HRT)
- ii) Solid Retention Time (SRT),
- iii) Mixed Liquor Suspended solids (MLSS),

Food to microorganism ratio (F/M ratio)

- b) An aeration tank of Volume 2000 m³ treating 10000 m³/day of Waste water with influent BOD 150 mg/l aimed to reduce BOD to 30 mg/l. Find F/M ratio used in the design. Take MLSS: 3000 mg/l
- c) An average operation data for conventional activated sludge treatment is as follows [8]

A	Wastewaterflow	20000 m ³ /d
В	Volume of aeration tank	$3000 \mathrm{m}^3$
С	Influent BOD	200 mg/l
D	BOD removal from primary sedimentation tank	30%
Е	Effluent BOD	10 mg/l
F	MLSS	2000 mg/l

Based on the information determine

- i) Aeration period (hour)
- ii) E/M ratio
- iii) Percentage efficiency of biochemical oxygen demand removal.

OR

Q2) a)	Conventional activated sludge plant is designed for a town to treat settled	ĺ			
	domestic sewage with diffused air aeration system for the given data as	;			
	follows [6]				
	i) Population of town: 1 lakh				
	ii) Per capita sewage contribution: 100 lpcd				
	iii) Settled sewage $BQD = 100 \text{ mg/l}$				
	iv) Effluent BOD desired = 10mg/l				
	v) MLSS in aeration tank = 3000mg/l				
	vi) $F/M = 0.2$				
	Find				
	1) BOD loading in Kg/d,				
	2) Aeration tank volume				
	Volumetric loading in kg BOD/m³.				
b)	Write short note on Rotating Biological Contractors (RBC). [4]				
c) (What do you understand by biological treatment of wastewater? List the	<u>,</u>			
	different types of microorganisms and explain their role in wastewater				
	treatment. [8]				
Q3) a)	Explain wastewater treatment principle of phytoremediation technology	7			
£ -7 ·-7	with neat sketch and give its application. [9]				
b)	A town having a population of 1.2 lakhs is producing sewage at a rate of	3			
	100 lpcd having 200 mg/l of BOD. A trickling filter having recirculation				
	ratio 1.5 is design to produce effluent of BOD 20mg/l. The operating				
	depth of filter is 2.5m. Find the diameter of the trickling filter is m. [9]				
	OR OR				
Q4) a)	Determine the size of a high-rate trickling filter for the following data; [9]				
	i) Sewage flow = 8 MLD				
	ii) Recirculation ratio = 1.5				
	iii) BOD of sewage = 230 mg/l				
	iv) BOD removed in primary sedimentation tank = 30%				
	v) Final effluent BOD = 20 mg/l				
	vi) Depth of filter = 3 m				
b)	What are Oxidation ponds? Explain the bacteria - algae symbiosis with a				
[()()] 11	neat sketch. [9]				
[6262]-1]	$2 8^{N}$				

<i>Q5</i>)	a)	Design a septic tank for 290 users. Water allowance is 120 L per head per
		day. Assume suitable data if required. [9]
	b)	Explain the working principle with neat sketch of following terms with the
		advantages and applications; [9]
		i) Packed bed reactor PBR),
		ii) Sequential batch reactor (SBR)
		OR
Q6)	a)	Explain the working principle with neat sketch of following terms with the
~		advantages and applications: [3+6]
		i) Up-flow Anaerobic Sludge Blanket (UASB)
		ii) Moving bed bio reactor (MBBR)
	b)	Explain with a neat sketch the working of a septic tank. Design a septic
		tank for 300 users. Water allowance is 120 L per head per day. Assume
		suitable data if required. [3+6]
		D. D.
Q 7)	a)	Write a short note on sludge drying bed. [5]
	b)	What is a Sludge? Why Sludge digestion is necessary. In activated sludge
		process, 1 MLD (by volume) of secondary sludge has to be returned to
		keep the required MLSS concentration in the aeration tank. This sludge has a water content of 99%. If the sludge water content is reduced to
		98%, what volume of the sludge will be needed to be recycled? [7]
	c)	Explain what do you understand by primary and secondary sludge. [4]
	,	OR
Q8)	a)	Explain the anaerobic sludge digestion process. Write a short note on
٤٠)		sludge drying bed. [5]
	b)	Sedimentation tank is treating the flow of 5 MLD containing 300 ppm of
		suspended solids. Tank removes around 50% of suspended solids.
		Calculate the quantity of sludge produce per day in bulk and weight if[7]
		i) Moisture content of the sludge is 97%
		ii) Moisture content of the sludge is 95%
	c)	Explain what do you understand by primary and secondary sludge. [4]
		Y Y N